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Abstract 

f u e l  containment would depend on various engine 
flow parameters. It i s  not c lear  how these param- 
e t e r s  in terac t .  Experimental flow t e s t s  covering a The recent emphasis on r 
suff ic ient ly  wide range of parameters would be too very h i  h speci f ic  impulse, e 
c o s ~ l y .  s ions( l7  c a n s  f o r  engine f l o  

low average fue l  ve loc i t i e s  ( 
The purpose of t h i s  analysis i s  t o  determine a fue l  density tha t  i s  about 

scaling laws f o r  the  buoyancy e f fec t  so tha t  ex- average propellant density. 
perimental. conditions can be re la ted  t o  the engine would be approximately 0.02 t 
conditions. The fuel  volume f rac t ion ( ~ r o ~ o r t i o n a l  These flow conditions can l e a  
t o  the contained fue l  mass) i n  a short coaxial flow forces on the fue l  with the r 
cavity i s  calculated with a programmed numerical tainment may be reduced by fu 
solution of the steady Navier-Stokes equations for  the cavity. Such a "buoyan 
isothermal, variable density f l u i d  mixing. The so- experimentally by Bennet an 
lu t ion  includes buoyancy, pressure gradient, and f l u i d  coaxial flow cavity. 
viscous shear terms, as well as the e f fec t s  of side strong e f fec t  i n  the experime 
and end walls. Solutions are  obtained a t  a concluded tha t  a t  conditions 
propellant-to-fuel  flow r a t i o  of 50 and a Reynolds e f fec t  c o d d  be much stronge 
number of 1000, f o r  fuel-to-propellant density ra-  l o c i t i e s  i n  the engine are  m 
t i o s  ranging from 1.0 t o  10, and f o r  various ve- experiment. 
h ic le  accelerations.  The main l imi ta t ion  of the 

(D 
io analysis i s  tha t  the numerical solution f a i l s  t o  
in converge f o r  Reynolds numbers above about 1000. would depend on many engine 
I 

W 
A dimensionless parameter B ca l led  the number, and vehicle acceler 

Buoyancy number was found to  corre la te  the fue l  how these parameters in t e ra  
volume f rac t ion f o r  large  accelerations and var i -  mental study covering the f 

ous density r a t ios .  This parameter has the  value would be much too costly, i 
B = 0 f o r  zero acceleration, and B = 350 f o r  fore analyt ica l  predictions 
typical  engine conditions. Calculation r e su l t s  the experimental r e su l t s  so 
show that  fo r  B l e s s  than 5.0 the f u e l  volume the present observations t o  
fraction,  which depends strongly on density r a t io ,  This report  describes an ana 
i s  independent of acceleration.  However, f o r  B the functional dependence of 
greater than about 40, the fue l  volume f rac t ion i s  fue l  volume f rac t ion)  on the  
nearly independent of density r a t i o  and decreases s i t y  r a t i o  and vehicle accel  
with increasing Buoyancy number. At a par t icular  f i e d  case of isothermal flow 
engine value of B = 350 the contained fue l  mass cavity. 
i s  decreased by a fac tor  of about 4.0 due t o  ve- 
h ic le  acceleration. 

Introduction 

The gas-core nuclear rocket is  a proposed as  f o r  the ducted j e t  by Ghi 
space propulsion system capable of high speci f ic  ~ u t r e ( ~ )  or the steady Navie 

thermal radia t ion from the f i ss ioning fue l  core t ion  of the 
which i s  a t  a temperature of about 60,000~ K. 

because the two gases are i n  d i rec t  contact inside 
the reactor cavity. IIumerous f l u i d  mechanics 



rad ia l  velocity 

axia l  coordinate 

fuel  mass fraction, loca l  fue l  density/ 
l o c a l  mixture density 

ized i n l e t  velocity P density 
o f i l e s  are a lso  fixed. 

ensity r a t i o  i s  varied from I-r viscosity 
l y  the velocity ra t io ) .  
subsequent sections of t h i s  w vor t i c i ty  

rce can be characterized by 
y number, B, which i s  pro- $ stream function 

root of vehicle accelera- 
the calculations w i l l  be generalized dependent flow variable i n  

substi tution equations 

i s  shown i n  Fig. 2, except for  F fuel  

index for  central  node 

j,e,w,n,s indices for  surrounding nodes 

K index fo r  each of three flow equations 

ized cbefficients i n  the three P propellant 

Oyl  wall node, adjacent inside node 
zed coefficients i n  the substitu- 

Analysis 

the 

nmber, defined i n  equation (15) The cavity flow model t o  be analyzed i s  shown 
in  Fig. 3. The analysis i s  r e s t r i c ted  t o  a rec- 
tangular cylinder geometry as  shown. The assmp- 
t ions of the analysis are: 

ed dependent flow variable i n  
ee flow equations 1. Steady, viscous flow, constant viscosity 

2. Isothermal flow 
function fo r  i n l e t  velocity and 3. In le t  and out le t  flows are  purely ax ia l  

4. Impermeable, no-slip side and end walls 

Equation Set 

The system of equations t o  be solved i s  a re- 
writ ten form of the variable density Navier-Stokes 
equations, the continuity equation, and the mass 
diffusion equation. The solution method i s  basic- 

distance from w a l l  a l l y  t e same one described i n  de ta i l  by Gosmm, 
e t  a l . ? ~ ) .  For sake of brevity only the main points 
of the analysis are repeated here. The rewritten 
equation se t  takes the form of three simultaneous, 
and similar, second order nonlinear p a r t i a l  d i f fer-  
e n t i a l  equations i n  the variables vor t ic i ty ,  stream 
function, and fuel  mass f ract ion (concentration). 
These equations are generalized in to  the form 

(K = 1,2,3) (la,b,c) 

The first l i n e  i n  t h i s  general equation has the 
convective terms, the second l i n e  has the diffusive 
terms, and the th i rd  l i n e  has the general source 
term including the acceleration body force term. 

uel if it were gathered to@;ether The coefficients ag, b ~ ,  CK, and dg can depend on 
central  volume 
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x,r and the primary variable FK, and are given i n  
table I .  The Schmidt number i s  taken as  Sc = 1.51. 

a lso  be specified. The i 
to  the "straightness" of 

Additional equations are for  vor t i c i ty  and Eqs. ( 2 )  t o  (4 ) .  The inle  
stream function i n  terms of velocit ies,  and for  ted from the expanded equa 
density i n  terms of mass fraction. 

u =  rb 
p r  ar where the term with a+/& 

0 t o  represent a pllrely c 

v = -L ik As w i l l  be discussed l a t e  
p r  ax ( 3 )  are  completely specified 

PF, UF, pp, and Up are  

= ($2) (4)  The fuel  volume fraction 
fraction of the cavity f i l l e d  

P ~ P ~  
P = 

PF + y(pp - P*) 

The solution of th i s  equation se t  requires 
tha t  the values of FK or aFK/an be specified on 
a l l  boundaries of the flow region. The centerline 
boundary conditions are: 

The numerical 

a (u = ,  , = 0, & =  0; a t  r =  0 i) (6) d e t a i l e d i n B e f .  6. 
a r  ' a r b y e )  are  writ ten i n  t 

node points of a rect  
The outer no-flow w a l l  boundary conditions are: flow region. Central. 

where the wall and inside node are  given the sub- 
scr ipts  0 and 1, respectively. The outlet  
boundary conditions are, for  the outlet  f a r  from 
the corner: 



ction with good convergence. It 
step prof i les  resulted i n  strongest 

and low fuel  volume fractions. Pro- 
de buffer layers resulted i n  l e a s t  
and increased fuel  volume fractions,  

trong recirculation coincided with 

density ratios,  or for  the nonzero buoyancy force 
cases.) It i s  worth noting that  these analytically 
determined buffer values give about the same opti-  

i ty ,  mass fraction, and stream mum i n l e t  p r o f i l  s as  were experimentally deter- 
a subroutine fo r  calculating fined by Johnsonr2 ) . 
, including the gravity term 
uation; a boundary condition Streamline and Fuel Concentration m o t s  
t y  and density distribution 

The effect  of various density ra t ios  and ve- 
to  r e s t a r t  calculations and hic le  accelerations on the general cavity flow i s  

best  i l l u s t r a t e d  by the streamline and fuel  con- 
centration contour plots  i n  Figs. 4 t o  6. These 
figures are from computer plots  of the converged 

usually in i t i a l i zed  by numerical solutions. The streamline plots  i n  
us solution on tape. This Fig. 4 and the fuel  mass fraction contour plots  i n  

Fig. 5 show the large recirculation c e l l  that  i s  
formed when the density r a t i o  i s  increased from 
pF/yp = 1.0 t o  4.0 with no buoyancy force. This 
reczrculation c e u ,  c lear ly  outlined by the zero 
streamline i n  Fig. 4(b), convects a substantial. 
amount of fuel  away from the fuel  plume, thus re- 
ducing the fuel  mass i n  the cavity. This explains 
the reverse curvature of the 50 percent contour i n  
Fig. 5(b) as  compared to  Fig. 5(a) .  The fuel  vol- 
ume fraction decreases from 0.072 t o  0.034 as  the 

The concentration contour plots  i n  Fig. 6 
show the effect  of vehicle acceleration on the 
shape and size of the fue l  plume for  a density 
r a t i o  of pF/pp =-2.0: Figure 6 shows that,  as  
vehicle acceleration increases from B = 0 t o  65, 

fue l  region stretching i s  the resul t  of buoyancy 
force accelerating the fue l  toward the downstream 

ndi- end. The concentration contours a t  B values 
ys i s  near 100 for  density ra t ios  greater than 1.0 have 

shapes similar t o  those i n  Fig. 6(b). These flows 

above (with zero acceleration), 
and by substantially lower fue l  volume fractions.  

It should be noted that  the fuel  volume frac- 

cussed above, the specified i n l e t  boundary condi- 
t ions  were optimized by preliminary. runs, t o  give 

ious the largest  calculated fuel  volume fractions.  
Thus no significant increase i n  calculated fuel  
volume fractions i s  expected for  different i n l e t  
conditions. Therefore it appears that  the low cal-  
cvlated values of fue l  volume fractions could pos- 

somewhat confirmed by the fac t  that  additional cal-  

t ion of 0.108 compared t o  the value of 0.072 a t  
he largest  the Reynolds number of 1000. The fac t  that the 
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analysis  does not converge f o r  very high Reynolds 
numbers, and t h a t  it r e s u l t s  i n  consistently low 
f u e l  volume f rac t ions ,  a re  the major shortcomings 
of t h i s  analysis .  However, t h i s  investigation i s  
concerned mainly with the functional  dependence of 
f u e l  volume f r ac t ion  on various parameters. Thus 
fo r  purposes of t h i s  report  we are  not a s  concerned 
with the precise values of f u e l  volume f rac t ion  a s  
with the trends i n  the  values, 

The var ia t ion  of the  flow with mass flow ra-  
t i o  and ou t l e t  diameter i s  a l so  noted here. Based 
on a few calculat ions,  the l a r g e r  mass flow ra t io s ,  
mp/mF, require l a rge r  values of ve loci ty  r a t i o ,  
Up/UF, which r e s u l t s  i n  stronger rec i rcula t ion  and 
correspondingly lower f u e l  volume f rac t ion .  The 
o u t l e t  diameter f o r  the parametric runs was 0.48 
times the cavity diameter. When the ou t l e t  diam- 
e t e r  was decreased t o  as  small a s  0.14 times the 
cavity diameter, the f u e l  volume f r ac t ion  fo r  a 
f ixed  engine accelerat ion was not s igni f icant ly  
changed. 

Effec t  of Density Ratio on Fuel Volume 
Fraction a t  "Zero-g" 

The flow equations were solved f o r  fue l - to-  
propellant  density r a t i o s  of 1 .0 ,  2.0, 4.0, 
and 10.0. The flow ra t co  was f ixed a t  mp/mF = 50, 
and the Reynolds number was 1000. The buoyancy 
force f o r  these cases was assumed t o  be zero. The 
propellant  t o  f u e l  flow r a t i o  was adjusted over the 
range U U 16.3 t o  183 t o  maintain the f ixed 
flow r a ~ ; . ~  ;he var ia t ion  of f u e l  volume f r ac t ion  
tuith density r a t i o  i s  shown i n  Fig. 7 .  The f u e l  
volume f r ac t ion  decreases from 0.072 t o  0.017 a s  
density r a t i o  increases from pF/pp = 1.0 t o  10.0. 
The f u e l  volume f r ac t ion  f i r s t  decreases slowly as  
density r a t i o  increases from 1.0  t o  2.0, and de- 
creases f a s t e r  ( a s  the -3/4 power of density r a t i o )  
f o r  density r a t i o s  beyond about 2.0. The two- 
region behavior i s  probably due t o  the f a c t  t ha t  
fo r  the  flow r a t i o  of 50 rec i rcula t ion  s t a r t s  a t  
about pF/pp = 2.0 and becomes stronger with in-  
creasing density r a t io .  The -3/4 power dropoff 
with density r a t i o  i s  stronger than was calculated 
i n  Ref. 4 with a boundary layer  solution (which 
d id  not include rec i rcula t ion)  where the var ia t ion  
was a s  the -1/2 power. The experimental r e su l t s  of 
Ref. 2 a l so  showed about a -1/2 power variat ion,  
which was probably due t o  the f ac t  t ha t  a t  the high 
Reynolds numbers rec i rcula t ion  was weaker than i n  
the present calculat ions.  

Effec t  of Acceleration on Fuel Volume Fraction 

Solutions of the flow equations were ob- 
tained fo r  various fuel-to-propellant density ra-  
t i o s  and fo r  various vehicle accelerat ions.  The 
vehicle accelerat ion was or ig inal ly  speci f ied  i n  
terms of a Froude number, U;/~D, which i s  the con- 
ventional  measure of fue l  i n e r t i a  t o  accelerat ion 
force. Values of Frouile 13umber were varied from 
lo-' t o  i n f in i ty .  A simplif ied analysis  indicated 
tha t  density r a t i o  should be included i n  a buoy- 
ancy parameter. Several dimensionless combina- 
t i ons  are possible.  After  several  d i f ferent  ways 
were used f o r  p lo t t i ng  the calculated r e su l t s ,  it 
was concluded t h a t  the bes t  parameter f o r  char- 
ac ter iz ing  and generalizing the buoyancy e f f ec t  has 
the form: 

This parameter i s  ca l led  the  Buoyancy 11unbe.r ir 
t h i s  repor t .  The combinatror, ?nr,lde +,lie rauic,il 
i s  a measure of the buoyancy force Lo the ~ n e r ' i h  
force on the fue l .  The squarc root  I o, used i o i  
ease i n  p lo t t i ng  the  B valires which rmpc  f r o a  
0 t o  about 350. 

The fue l  volume f r ac t ion  ~s ploLLe3 i n  I'ig, 8 
a s  a function of Buoyancy number l o r  vari-ou; den- 
s i t y  r a t io s .  The calculat ions range _"?om S = 0 
t o  about 100, where the upper value 1 i Che vm,csi- 
c a l  convergence l i m i t .  For a f ixed  densit1 ra t  Lo 
the  f u e l  volume f r ac t ion  i s  consta.nt %or sxnaXL L 
values, and decreases as  a constarcit poww OP 1 
f o r  la rge  B values. Of parLieul.ar apor inncc  i s  
the f a c t  tha t ,  f o r  the combiriatioli o i  vzriaulec i n  
B, the curves fo r  the various density r a t i o s  Skdl. 
close together a t  l a rge  B valuer, imich confAlms 
the form of Eq. (15).  

A t  Buoyancy numbers above about 43, Lie file1 
volume f rac t ions  are  close enough t o  a sin2l.e cx -  
ponential l i n e  t h a t  they may be r e p r c s e n i c ~  by a 
single corre la t ing  curve. This c o r r e ~ a l r n g  Livr 
i s  shown dotted i n  Fig. 8 and 5s sivcil by ille 
equation 

This l i n e  i s  used t o  extrapolate the ca l cu l* '  L % U ~ O ? C  ' 

t o  the Buoyancy number of 350 a t  Che c?n:illc acczl- 
e r a t ion  of "0.02 g." A t  a density r a l i o  of l O , O ,  
which i s  close t o  the  engine value, st, 1 s  seen -in 
Fig. 8 t h a t  the f u e l  volume f rac t ion  3.s decreased 
due t o  buoyancy e f f ec t  by a fac tor  o; abouc 4,0, 

This reduction i n  f u e l  volume l ine i ion  ahcdd  
be investigated and ve r i f i ed  1n f u t w c  r l ~ ~ i  s i r~u-  
l a t i o n  experiments. The Buoyancy n~xriber of tal- i-  
ous engine designs w i l l  probably ranre fro:: abed 
B = 100 t o  500, as  shown i n  Fj 8. 8 ,  &r coii~par:son, 
present experiments operate a t  Buoyancy mil~c-r- 110 

l a r g e r  than about B = 30. Therefore: fo r  acct,- 
r a t e  assessment of the buoyancy effeci,, tbc ieal,_:e 
of experimental Buoyancy numbers shold.6 be cx- 
tended in to  the range of engine value?, 

Conclusions 

A two-fluid steady Navier-S 
l u t i o n  has been programmed fo  
flow i n  a gas-core nuclear r o  
ing  the buoyancy force due t o  
and vehicle accelerat ion.  So 
and fue l  volume f r ac t ions  wer 
propellant-to-fuel  flow r a t i o  
number of 1000, i n  an L/D = 
to-propellant density r a t i o  r 
and the vehicle accelerat ion 5 

t o  a value f o r  the engine. Ca 
ume f rac t ions  are considerabl 
ured i n  a coaxial flow experi 
ably because the numerical so 
f o r  Reynolds numbers below ab 
experiment was a t  a Reynolds 
This report  i s  concerned with 
calculated f i e 1  volume f r a c t i  
with the exact values. The 
mined i n  t h i s  report  t o  be 
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Figure 1. - Conceptual gas core nuclear  rocket engine. 
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e 3. - Cavity model showing in le t  profi les and buoyancy 
force. 



Figure 4. - Streamline plots for different density ratios, 
mplmF = 50, Re = 1000, B = 0. 



(B )  pF/pP = 4.0. 

Figure 5. - Fuel mass fraction contours for different den- 
sity ratios, mplmF = 50, Re = 1000, B = 0. 



Figure 6. - Fuel mass fraction contours for  different vehicle 
accelerations, mplmF = 50, Re = 1000, pF/pp = 2.0. 
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FUEL-TO-PROPELLANT DENSITY RATIO, pF/pp 

Figure 7. - Variat ion of fue l  volume fract ion wi th  fuel-to- 
propellant density rat io for zero acceleration. 
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Figure 8. - Fuel volume fract ion as funct ion of buoy- 
ancy number for various density ratios. mplmF = 50, 
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